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The rational design of catalyst structures tailored to target performance is an ambitious andprofoundly
impactful goal. Key challenges include achieving refined representations of the three-dimensional
structure of active sites and imbuing models with robust physical interpretability. Herein, we
developed a topology-based variational autoencoder framework (PGH-VAEs) to enable the
interpretable inverse design of catalytic active sites. Leveraging high-entropy alloys as a case, we
demonstrate that persistent GLMY homology, an advanced topological algebraic analysis tool,
enables the quantification of three-dimensional structural sensitivity and establishes correlations with
adsorption properties. The multi-channel PGH-VAEs illustrate how coordination and ligand effects
shape the latent space and influence the adsorption energies. Building on the inverse design results
from PGH-VAEs, the strategies to optimize the composition and facet structures to maximize the
proportion of optimal active sites are proposed. This interpretable inverse design framework can be
extended to diverse systems, paving the way for AI-driven catalyst design.

Heterogeneous catalysis plays a central role in modern industry, driving
advancements in energy conversion and environmental sustainability1,2.
The understanding and design of catalytic active sites, which are specific
surface regionsor atomgroups that directly affectmolecular adsorption3, are
crucial, as they directly determine the efficiency, selectivity, and stability of
catalytic processes. The intricate microstructural characteristics of active
sites, arising from the combination of components, dynamic behavior, and
spatial positioning, render the analysis of molecular adsorption states sig-
nificant challenges, even for the simplest yet most critical adsorption
energies4–7. High-throughput density functional theory (DFT) calculations
and machine learning (ML) methods, commonly referred to as forward
design, have been extensively utilized to establish structure-property rela-
tionships and predict adsorption properties8–10. These efforts have deepened
our fundamental insights into heterogeneous catalysis, exemplified by the
establishment of linear scaling relationships and volcano plots in various
catalytic reactions11–14. Once the optimal adsorption state for a specific
catalytic reaction is understood, the focus naturally shifts to identifying
which types of active sites can achieve this adsorption state beyond the
benchmark catalysts. This process, referred to as inverse design, entails a
transition from property to structure15. While the concept of inverse design
has been around for many years, it has only recently begun to reveal its full

potential with the emergence of deep generative models. The variational
autoencoder (VAE) and the generative adversarial network, two prominent
generative models, have made significant strides in the fields of molecules
andmaterials, facilitating the realization of automated “closed-loop” design
processes aimed at achieving targeted performances16–20. Yet, applications in
heterogeneous catalysis remain scarce21.

The primary challenge is to accurately represent catalytic active sites,
with two key factors contributing to their uncertainty and complexity: the
variations in facets, defects, and size, referred to as the coordination effect22,
and the random spatial distribution of different elements, known as the
ligand effect23. In a real catalyst, the coordination and ligand effects inter-
twine to create a complex anddiverse distributionof catalytic active sites.An
ideal representation would encode both coordination and ligand effects, be
compatible with gradient-based optimization, and allow active sites to be
reconstructed and decoded from the generativemodel. Popular expressions
of catalytic active sites based on cheminformatics or graph have achieved
significant progress but still face challenges in capturing the distant atomic
effect and theoverall three-dimensional structural complexity8,24–27.Another
challenge is that the “black box" nature of deep learning often makes gen-
erative models lacking in interpretability28. In catalyst design, we seek not
only to identify effective active sites but also to understand the reasons
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behind their effectiveness. This raises a fundamental question in hetero-
geneous catalysis: which physical properties of a catalyst surface dictate the
chemisorption strength of adsorbates29–34. Although generative models can
reverse-engineer properties-structure relationships to identify newpotential
candidate materials, the use of high-dimensional latent spaces to represent
data structures often means that the generation process lacks intuitive
physical intuition,making it difficult to understand the specificmechanisms
behind the model’s output35,36. Extracting hidden patterns from the latent
space into interpretable formats can lead to testable theories andhypotheses,
further advancing scientific understanding28.

In this work, we developed a novel topology-based VAE framework
(PGH-VAEs) to enable the high-resolution representation of catalytic active
sites and interpretable inverse design, using *OH adsorption—a key step in
the oxygen reduction reaction (ORR)—on IrPdPtRhRu high-entropy alloys
(HEAs) as an example. HEAs have recently emerged as a promising
approach forfine-tuning catalytic properties due to their extensive variety of
active site types, stemming from the high variability in local structural
composition and coordination37–41. GLMY homology, proposed by Gri-
gor’yan et al., is a generalized homology theory based on path complexes
that extends classical homology to directed and non-symmetric
structures42–44. It enables the topological analysis of complex systems with
directionality or asymmetry, making it particularly useful for capturing
subtle structural features and sensitivity in crystalline structures.We employ
persistent GLMY homology (PGH) to achieve a refined characterization of
the three-dimensional spatial features of catalytic active sites. A multi-
channel VAE with modules dedicated to encoding and decoding the
coordination and ligand features is developed, enabling the latent design
space of active sites to possess substantial physical meaning. Leveraging a
semi-supervised learning framework, we achieved a high-precision VAE

model using only around 1100DFT data points, attaining a remarkably low
mean absolute error (MAE) of 0.045 eV in *OH adsorption energy pre-
dictions. We further elucidate how coordination and ligand effects, espe-
cially the distant atoms that do not directly contact with adsorbate, shape
*OH adsorption states, offering targeted optimization strategies for HEA
catalysts through inverse design. This proof-of-concept protocol establishes
a solid foundation for interpretable inversedesignof catalytic active sites and
can be extended to any other catalytic processes and systems. The inte-
gration of topology-based descriptors with interpretable property-structure
relationships renders the ML “black box" more transparent, bringing us a
step closer to on-demand catalyst design rather than relying on traditional
trial-and-error approaches.

Results
Workflow overview
The overall workflow of the PGH-VAEs is illustrated in Fig. 1. To char-
acterize the intricate microstructure of catalytic active sites, we developed a
topology-based descriptor enriched with chemical information, enabling a
unified representation of coordination and ligand effects (Fig. 1a). Subse-
quently, we generated structures for *OH adsorption on HEAs with uni-
formelemental ratios across various crystal facets.AsHEAs represent oneof
the most complex catalytic systems, employing them as a model enables an
effective simulation of the multifaceted complexities found at active sites in
real-world catalysts. Constrainedby the substantial computational demands
of DFT simulations, we are limited to conducting first-principles calcula-
tions on only a small selection of structures. To overcome this, we developed
a semi-supervised ML model to enhance our dataset. Specifically, we start
with a labeled database of adsorption sites with known energies obtained
from DFT calculations. A lightweight and efficient MLmodel is trained on

Fig. 1 | Overview of feature extraction, dataset construction, and workflow for
energy prediction and interface design. a Schematic illustration of feature con-
struction. Coordination features are extracted using the PGH method, while ligand
features are represented based on element properties. b Schematic of dataset con-
struction using DFT and semi-supervised learning. A GBR model was initially

trained on DFT-calculated adsorption energies and subsequently employed to
predict adsorption energies for additional simulated active sites, enabling the con-
struction of an expanded, pseudo-labeled dataset formodel training. c Framework of
PGH-VAEs, includingmodules for encoding, latent space visualization, latent space
sampling, and decoding to generate potential active sites.
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this dataset and subsequently used to predict the adsorption energies of
newly generated structures that form the unlabeled database. By randomly
generating unlabeled data and using the MLmodel trained on DFT data to
label these samples—specifically by predicting their adsorption energies—
we can effectively augment the dataset used for VAE training (Fig. 1b). This
process transforms the original labeled data, the predicted adsorption
energies, and the newly generated structures into a complete dataset, which
is then used to train the VAE. Subsequently, a multi-channel VAE frame-
work was introduced, with its latent space offering strong interpretability,
allowing structure-performance relationships to be understood in terms of
coordination and ligand effects. To avoid introducing bias into model
evaluation, the unlabeled database was only used during training, and all
testing was conducted exclusively on original DFT-calculated data. Further,
the VAEs can generate novel active site structures tailored to specific
adsorption energy criteria, offering insightful guidance for catalyst optimi-
zation and advancing the design of high-performance catalytic materials
(Fig. 1c).

Active sites identification and representation
Catalytic active sites typically refer to specific regions or groups of atoms on
the catalyst surface that directly influence the molecular adsorption state3.
Tomaximize thediversity of active sites,we sampledonvariousMiller index
surfaces, including (111), (100), (110), (211), and (532) of IrPdPtRhRu
HEAs (Fig. 1a). The (111), (100), (110), (211), and (532) facets were selected
because they are among the most commonly studied surfaces in ORR
research45–47, representing a diverse set of low-indexandhigh-index surfaces
that capture a range of atomic coordination environments commonly
observed in transition metal catalysts. IrPdPtRhRu HEAs were selected for
their stability, ease of synthesis, and demonstrated potential in ORR
applications37,48,49. According to Previous studies, the bridge site is con-
sidered to place the *OHadsorbate40,50. Figure S1 shows all 13 unique bridge
sites on these Miller index surfaces with their designation. The bridge site
and the first and second-nearest neighbors of the bridge atoms are con-
sidered to constitute the primary chemical environment (active sites)
influencing molecular adsorption51,52.

Active sites are primarily influencedby coordination and ligand effects.
Coordination effects refer to the spatial arrangement of atoms within the
active site, encompassing structural features such as crystal facets, defects,
and corner sites. We introduced PGH as a novel mathematical tool for
capturing nuanced structural variations. Ker and Im represent the kernel
and image of the boundary operators in PGH, capturing the cycles and
boundaries in the topological structure. We include this formulation to
illustrate the mathematical foundation of our topological fingerprinting
approach.Thedetailedmathematical principles of PGHare presented in the
Methods section. Here, we briefly introduce its logic and applications, using
*OH adsorption on the (211) surface, denoted as (211) summit, as an
example (Fig. 2a). First, the active site atoms are represented as a colored
point cloud, with paths established based on bonding and element prop-
erties (group, period and atom radius) differences between points. Once
paths are established, the atomic structure is converted into a path complex.
The geometric characteristics of this path complex can be captured across
various spatial scales through a process called filtration. As the filtration
parameter (distance) increases, the number of visible paths expands, pro-
vided that the path lengths remain below the filtration threshold. Insets of
Fig. 2a show adjacency matrices for path complexes at different filtration
parameters. Simultaneously, thefiltrationprocesswill generate the distance-
based persistent GLMY homology (DPGH) fingerprint. Since each topo-
logical invariant (i.e., each Betti number) has its own persistence range, the
number of recorded features can vary across different structures, leading to
fingerprints of inconsistent dimensions. To resolve this issue, instead of
recording each individual barcode, we discretize the continuous filtration
parameter with a fixed step size of 0.1Å and count the number of Betti
numbers present at each discrete filtration value. These counts are then
plotted as a line chart against the filtration parameter (the blue figure in
Fig. 2a, b), and the resulting line chart is represented as a feature vector.

Additionally, we set the maximum filtration distance to 4Å, which ensures
that the filtration process is complete for all samples. As a result, the input
feature vectors for all structures have a consistent dimensionality of 40.
Therefore, by using this statistical summarization approachover persistence
diagrams, we ensure that the resulting fingerprint vectors have a uniform
length, making them compatible with ML models. In algebraic topology,
Betti numbers are topological invariants that describe the number of
independent features in different dimensions of a space. For a given
dimension n, the Betti number is defined as the rank of the nth homology
groupHn, and it is typically denoted by βn. In our work, the Betti numbers
have the following interpretations: (1) β0 corresponds to the number of
independent components (atoms), representing 0-dimensional features. (2)
β1 reflects the number of directed cycles composed of 1-paths (directed
edges), capturing 1-dimensional topological structures. (3) β2 denotes the
number of voids in terms of paths composed of 2-paths, representing
2-dimensional features. This notation offers an interpretable representation
of topological characteristics relevant to catalytic active sites across multiple
geometric scales. The blue figure, representing the DPGH fingerprint, is the
line plot of Betti numbers as a function of filtration parameters, which
captures topological invariants of the catalytic site using GLMY homology.
The horizontal axis denotes the filtration parameter (inÅ), and the vertical
axis shows the Betti numbers in dimensions 0, 1, and 2. The more detailed
analysis of the DPGH is presented in Supporting Note 1. This filtration
process highlights the structural intricacies and allows us to capture the
topological features essential for active sites.

The application of PGH reveals distinctions between catalytic sites
with similar coordination numbers but different structural features.
Figure 2b presents another *OH adsorption configuration, denoted as
(211) valley, on the (211) facet with the same neighbor coordination as the
(211) summit inFig. 2a. The representation based on coordinationnumber
miss suchdifferenceswith the bridge atomsboth having one 9-coordinated
atom and one 10-coordinated atom (Fig. 2c) while the evolution of Betti
numbers in Fig. 2b effectively differentiates this structure from that in
Fig. 2a. Additional results for the other 11 active sites are presented in
Fig. S2, offering a comprehensive analysis of structural features by PGH.
Ultimately, incorporating the approximate treatment, mean values of β0,
β1, and β2 in the DPGH fingerprints are computed across the filtering
process. These values are amalgamated into a 1 × 3 vector to serve as the
coordinate feature for the active sites. For the ligand effect, we represent it
directly based on the element properties of atoms (group, period, and atom
radius), ordered by their spatial distance from the adsorbate (Fig. 2d).
Ultimately, the vector representation of the active site is constructed by
concatenating the coordination effect vector with the ligand effect vector,
thereby achieving a dual description of the active site’s topological and
chemical properties.

The *OH adsorption dataset
Although there are no established guidelines on the optimal size of training
datasets for deep generativemodels, empirical evidence suggests that larger
datasets generally lead to higher-quality generated data16. Calculating the
adsorption energy of *OH relies on DFT, which is highly computationally
demanding. To address this, we introduce a semi-supervised learning
framework to efficiently construct and expand the dataset.We constructed
a dataset of 1159 DFT data points of *OH adsorption, randomly sampled
to cover each unique bridge site across various Miller index surfaces.
Notably, the adsorption energy here refers to the difference between the
*OH adsorption energy on HEA active sites and that on Pt(111). It is
widely recognized that an adsorption energywithin 0.1 eV above that of Pt
(111) can facilitate *OH desorption, thereby enhancing ORR
performance37,53. Using this dataset, we trained a Gradient Boosted
Regression (GBR) model with the combined feature representation,
achieving a test setMAEof 0.078 eV for *OHadsorption energyprediction
(Table S1). The labeled dataset for semi-supervised VAE training was
constructed by randomly sampling 1159 DFT-labeled structures across
diverse coordination environments, ensuring a broad representation of
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active site types. To expand the dataset, an additional 3477 structures were
pseudo-labeled using a GBRT model trained on PGH-derived features.
The simulated datawere generated bymodifying the atomic species within
the averaged atomic Cartesian coordinates derived from the DFT-
optimized structures. This approach is justified by the observation that
*OH adsorption perturbs surface metal atoms by less than 0.1Å in the
DFT dataset, allowing the use of averaged coordinates to represent new
structures. Notably, although the newly generated structures share the
same spatial geometry, the directionality of the connections is altered,
enabling thePGHtodistinguishbetweendifferent sampleswithin the same
local environment based on their topological features. This expanded our
labeled dataset to 4636 points. Although 75% of these labels were not

obtained via direct DFT calculations, they enhance VAE model con-
vergence without sacrificing accuracy, as detailed below.

The training of PGH-VAEs
The PGH-VAEs are designed to predict and generate catalytic active sites,
with the core innovations in their multi-channel architecture and high-
precision adsorption energy predictions, which establish interpretability in
the latent space and accuracy in inverse design.

In the training process, themodel receives feature vectors representing
coordination and ligand characteristics of HEA interfaces. These are sepa-
rated into two distinct encoders (Fig. 3a), each generating Gaussian dis-
tributions for the coordination and ligand variables (mean and variance).

Fig. 2 | Workflow for coordination and ligand feature extraction of active sites.
aA schematic workflow for extracting the coordination features of the (211) summit
bridge active site using PGH. Active site atoms are initially represented as a colored
point cloud, with paths direction defined by bonding and electronegativity differ-
ences. These paths form a path complex, whose geometric features are analyzed
across scales using filtration. As the filtration parameter increases, visible paths
expand and are recorded, then converted into vectors formachine learning. The blue
bar chart is the DPGH fingerprint. The DPGH fingerprint encapsulates the GLMY
homology in dimensions 0 (H0), 1 (H1), and 2 (H2). The vertical axis denotes the

value of the Betti number, while the horizontal axis represents thefiltering parameter
in angstroms (Å). b The workflow for extracting the coordination features of the
(211) valley bridge active site. cCoordination numbers of neighboring atoms for the
(211) summit and (211) valley bridge sites are shown. It can be observed that they
share the same coordination environment, with the bridge atoms both having one
9-coordinated atom and one 10-coordinated atom. d Illustration of the process for
obtaining the ligand features of active sites. The element properties of atoms (group,
period, and atom radius) are arranged as a vector according to their spatial distance
from the adsorbate.
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Random sampling within these distributions provides coordination and
ligandvariables,which are then input into correspondingdecoders (Fig. 3b).
This process constructs a structured latent space where each point encodes
specific coordination and ligand information (Fig. 3c). In the Generation
section of Fig. 3d, the decoders reconstruct the original feature vectors, while
the prediction branchcombines coordination and ligand features to forecast
adsorption energy. PGH-VAEs are trainedbyminimizing four losses: ligand
feature reconstruction error (Lligand), coordination feature reconstruction
error (Lcoordination), property (the adsorption energy) prediction error
(Lproperty), andKullback-Leibler divergence (KLdivergence) (LKL), yielding a
total loss function:

Ltotal ¼ Lligand þ Lcoordination þ Lproperty þ LKL: ð1Þ

Initially, we attempted to use only the 1159 DFT-calculated OH
adsorption energies as the model dataset, with a training-to-test set ratio of
7:3. Both the MAEs and RMSEs of the property predictions show a sharp
initial decrease (Fig. S4), followed by a gradual decline. In testing, however,
errors initially decrease but then rise, indicating overfitting—a common
issue in computationalmaterials science due to limiteddata. To address this,
we incorporated the expanded dataset of 4636 points generated through
semi-supervised learning. In training, only the semi-supervised data were
added to the training set, while the test set remained as 30% of the original
DFT-calculateddata, ensuring robust and reliable test accuracy. PGH-VAEs
were retrained with the updated dataset; architecture and parameters are
provided inTables S3 and S4.Weobserved that during the training of PGH-

VAEs, LKL typically has a larger magnitude (~10) compared to Lligand (~1),
Lcoordination (~1), and Lproperty (~0.1). This behavior is expected and arises
from differences in task complexity and output dimensionality. Specifically,
LKL is computed over latent distributions across the batch and all latent
dimensions, making it inherently larger. In contrast, the prediction
branch optimizes a single scalar property, which is easier to fit and naturally
yields a smaller loss. To ensure balanced training, we carefully weighted
the ligand and coordination reconstruction losses according to their
dimensionality54,55. Figure S5 illustrates the MAE and RMSE trends over
epochs in training and testing, showing a sharp initial drop followed by a
gradual decline, indicating stable training and effective mitigation of the
prior overfitting issue. The final results show that PGH-VAEs achieve an
MAEof 0.045 eV for adsorption energy prediction, reducing the error by an
impressive 50% compared to the coordination number-based neural net-
work model for HEA catalysts (Table S5)40. These results underscore the
exceptional performance of PGH-VAEs and highlight the transformative
impact of the semi-supervised learning approach in significantly enhancing
model performance.

Demonstration of PGH-VAEs on active sites design and
optimization
Imbuing deep generative models with interpretability facilitates the
understanding of the physical principles underlying materials design.
During the prediction and generation process, PGH-VAEs employ a two-
dimensional latent space, where each data point represents an input
instance. The coordinatesof these points in the latent space are derived from
the downscaling of coordination and ligand encoders via principal

Fig. 3 | PGH-VAEs: encoding, generation, and prediction workflow. a Encode
Part: Two encoders process coordination and ligand feature vectors from the HEA
interface, outputting mean and variance parameters as Gaussian variables. Ligand
and coordination variables (green dashed lines) are randomly sampled. b Latent
Space: Ligand and coordination variables are independently clustered and visualized

on a 2D scatter plot, with data point colors representing adsorption energy.
cGeneration Part: Coordination and ligand variables from new sampling points are
decoded by two decoders into feature vectors for new HEA interfaces. d Prediction
Part: The framework predicts *OH adsorption energy by combining sampled ligand
and coordination variables in the property prediction branch.

https://doi.org/10.1038/s41524-025-01649-8 Article

npj Computational Materials |          (2025) 11:147 5

www.nature.com/npjcompumats


component analysis (PCA). Both ligand variables and coordination vari-
ables explain over 95% of the total variance, ensuring effective dimension-
ality reduction. The results (Fig. 4a) reveal a significant correlation between
the relative adsorption energy of samples and the coordination and ligand
variables in the latent space. Along the diagonal from the top left to the
bottom right, the adsorption energy transitions from negative to positive,
indicating that coordination and ligand effects can be utilized to explain
variations in adsorption performance, with their influence exhibiting a
coupled nature.

To further distinguish how the two effects regulate adsorption energy,
we analyzed their individual correlationswith changes in adsorption energy.
For the ligand effect, leveraging the use of PGH to describe the active sites,

we can directly quantify structural features into specific numerical values by
linearly combining the average values of β0, β1, and β2, detailed in Sup-
porting Note 2. The 13 unique active sites show distinct numerical differ-
ences, even amongbridge sites on the sameMiller index surface, showcasing
the strength of topological data analysis in capturing the three-dimensional
structure sensitivity and reducing them to simple numerical representations
(Tables S6 and S7). We mapped the numerical representations of these 13
active sites against their corresponding average adsorption energies,
revealing a perfect linear correlation that underscores the strong influenceof
structure sensitivity onadsorption energy (Fig. 4b).The substantial standard
deviations observed for each point reveal the considerable tuning space for
adsorption energy by varying atomic species within identical structural

Fig. 4 | Demonstration of PGH-VAEs on active sites design and optimization.
a Latent space of adsorption energy plotted against coordination and ligand
variables derived via PCA. Data points are color-coded based on their adsorption
energy values. b Correlation between numerical representation and mean
adsorption energy for 13 unique bridge-site structures. The numerical repre-
sentation of structures is obtained by linear combination of their Betti numbers
(β0, β1, and β2). c Correlation between numerical representation and mean
adsorption energy for 15 unique bridge-site elemental combinations. The
numerical representation of elemental combinations is derived by linear combi-
nation of the element properties of bridge atoms. Standard deviations are shown
for each point to visualize the variability in adsorption energy within specific
structures or elemental combinations. d Percentage distribution of elemental
composition for bridge-site atoms, first-nearest neighbors, and second-nearest

neighbors in the latent space associated with optimal *OH adsorption.
e Percentage distribution of elemental composition for bridge-site atoms, first-
nearest neighbors, and second-nearest neighbors in active sites generated via
inverse design. f Illustration of active sites generated through inverse design,
highlighting bridge-site atoms and distal Ru atoms. g Density of states (DOS)
analysis of Ru-doped Pt (111) panels from left to right show the d-orbital states,
d-band centers, and *OH adsorption energies for Pt adsorption sites without Ru
doping, with three Ru atoms doped in the first-nearest neighbors, and with three
additional Ru atoms doped in the second-nearest neighbors of the bridge site.
h, i Heatmaps of the relationship between PtPdRu alloy composition ratios and
catalytic activity on the (111) and (211) facets, respectively. Color codes: Ir: green,
Pd: pink, Pt: purple, Rh: blue, Ru: yellow, O: red, H: white. In (g), the bridge atoms
that adsorb *OH are highlighted by dark purple.
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environments. Furthermore, theweights of the averageBetti numbers reveal
that β0 (connected components) and β2 (three-dimensional cavities)
dominate in the structural representation, underscoring their pivotal roles in
determining adsorption energy,whereas the influence ofβ1 (ring structures)
is comparativelyminor. Chemically, bothβ0 andβ2 reflect structural density
from complementary perspectives: β0 represents the number of indepen-
dent atomic components, with higher values indicating increased local
atomic density, while β2 captures the presence of three-dimensional cavities.
A greater number of such cavities implies a higher density of path combi-
nations (chemical bonds) within the local structure, corresponding to a
more compact atomic arrangement and a higher degree of bond saturation,
thereby facilitating the *OH desorption. Consequently, the 211-valley
bridge site and 111-bridge site (Fig. S1), which all exhibit the characteristic
close-packed structure of FCC metals, exhibit more positive *OH adsorp-
tion energies, favoring ORR performance. The (532) surface displays sub-
stantial variations in *OH adsorption energy across its various bridge sites,
elegantly captured through the numerical representations provided by
PGH. A comparative analysis with the Generalized Coordination Number
(GCN)56,57 descriptor shows that the GCN model achieved a correlation
coefficient of 0.43 and an R-squared value of 0.18 (Fig. S8), substantially
lower than the VAE-based model’s values of 0.96 and 0.93. This highlights
PGH’s remarkable sensitivity in characterizing subtlemicroscopic structural
features.

We applied a similar approach to analyze the ligand effect. The 15
unique atomic combinations at the bridge sites were quantified into specific
numerical values based on their linear combination of element properties
(Supporting Note 3, Tables S8 and S9). Plotting these numerical repre-
sentations against the corresponding average adsorption energies also
revealed a perfect linear correlation, emphasizing that the bridge-site atoms,
being in direct contact with the adsorbate, play another pivotal role in
determining adsorption energy (Fig. 4c).Despite identical bridge-site atoms,
significant standard deviations in adsorption energy suggest that adjust-
ments to the active site structure or distal atoms can further modulate *OH
adsorption. Among the bridge-site combinations, Pt–Pt, Pd–Pt, and Pd–Pd
exhibit the most positive adsorption energies, suggesting they are the most
favorable active sites. This is intuitive, as both Pt and Pd in their metallic
states exhibit excellent ORR performance. Based on these findings from the
latent space, active sites on the (111) or (211) facets with Pd and Pt forming
the bridge sites are identified as the most advantageous for achieving the
optimal *OH adsorption state.

Discovering active sites with targeted properties is the core objective of
inverse design. Therefore, we conducted ~240 structural samplings in the
lower-right region of the latent space, where the optimal *OH adsorption
state is observed. The corresponding coordination and ligand environments
were decoded to identify the associated active sites. All these active sites
exhibitedcharacteristics of the (111) and (211) facets (Fig. S6), in accordance
with the best-performing samples in the latent space and validating the
reliability of our generative approach. Furthermore, we analyzed the ele-
mental composition of these structures by averaging across all samples
(Fig. 4e). Data points in the latent space with adsorption energies greater
than that on Pt (111) were also plotted for comparison (Fig. 4d). Both the
inversely generated data and the latent space data consistently exhibited a
preference for Pt or Pd as the bridge-site atoms. Interestingly, in the
inversely generateddata, theproportion of Ru atoms in the second and third
nearest neighbors is notably high compared to other elements(Fig. 4e, f).
This suggests that incorporating Ru within the second and third nearest
neighbors of the bridge site favors achieving the optimal *OH adsorption
state. Such effects may stem fromRu’s high electron affinity than Ir and Rh,
which can strongly influence the electronic structure of neighboring Pt and
Pdatoms, therebymodulating the*OHadsorption state. To investigate this,
we constructed simplified models of Pt (111) surfaces doped with Ru at
various positions. The results (Fig. 4g) reveal that as theRu content increases
in thefirst and second-nearest neighbors of thebridge site, the d-bandcenter
of the Pt–Pt site directly interacting with *OH shifts significantly down-
ward, facilitating *OH desorption at this site. Incorporating Ir or Rh while

maintaining the same configuration results in significantly smaller effects on
the d-band center and adsorption energy (Fig. S7). These findings
demonstrate that distal atoms, even without direct adsorbate interaction,
can modulate adsorption energies via local coordination and electronic
effects. This may be attributed to the contribution of void structures (β2)
(Fig. 4b and Table S7), as Ru in the second-nearest neighbors affects the
bridge site via remote spatial interaction. This insight not only reinforces the
robustness of our generativemodel but also provides amechanistic basis for
tailoring active sites in HEAs.

Based on the results of inverse design, an optimization strategy for
IrPdPtRhRu HEAs can be proposed. On one hand, the surface should
predominantly expose Pt and Pd sites as the direct *OHadsorption centers;
on the other hand, the incorporation of Ru in the neighbors can enhance the
activity than the Ir and Rh elements. To further quantify this strategy and
provide quantitative guidance for experimental synthesis, we systematically
explored the compositional ratios of PtPdRu ternary alloys. Alloy compo-
sitions were varied from 0.1 to 0.9, yielding 36 distinct concentration gra-
dients. For each gradient, 1000 potential active sites were enumerated, and
their *OH adsorption energies were predicted using the VAE’s prediction
branch.The relative activity (relative to the catalytic performanceof thepure
Pt(111) surface) of each site was calculated via the Arrhenius equation, and
the cumulative activity for each specific composition was determined
(details in methods). Our findings (Fig. 4h, i) reveal that the highest activity
is achievedwith aPt: Pd:Ru ratioof 0.7:0.2:0.1 on the (111) facet and3:3:4on
the (211) facet, with activities 6646 times and 11 times greater than those of
the PtPdIrRuRh (111) and (211) facets, respectively. Experimentally, such
tailored alloy compositions can be synthesized through advanced techni-
ques, including vapor phase spark discharge, sputtering, and acute chemical
reduction, among other approaches38.

Discussion
GLMY topology leverages the relationships between vertices (atoms) and
paths (chemical bonds) to represent structures, making it naturally suited
for the description of atomic configurations. It retains critical three-
dimensional spatial information across multiple scales, overcoming the
dimensionality reduction issues often associated with graph and
cheminformatics-based representations. Traditional graph-based descrip-
tors, built on vertices and edges, are limited by their inability to capture
directionality and high-dimensional interactions, making them insufficient
to distinguish topologically distinct environmentswith similar coordination
numbers. Furthermore, it translates structural features into quantitative
values by extracting topological invariants, such as Betti numbers. These
invariants—capturing attributes like connectivity, loops, and voids—pro-
vide a clear numerical representation of different structures, effectively
quantifying structural differences and laying a foundation for the inter-
pretability of deep generative models. The GLMY topology is inherently
adaptable to systems with dissimilar atomic radii, as both vertex weighting
and interatomic distances are naturally incorporated into the path complex
construction. While the atomic radii of elements studied in this work are
relatively similar, the proposed method remains applicable to more diverse
systems, where variations in atomic size could play amore pronounced role
in shaping topological features. Additionally, when combined with a multi-
channel encoding structure, theVAEmodel organizes the latent space into a
two-dimensional landscape of structural and chemical information. This
arrangement visualizes regions with optimal *OH adsorption properties,
guiding further exploration of catalytic active sites through targeted sam-
pling in the latent space. Unlike traditional forward-learning methods that
require extensive screening overpredefined latent spaces, this inverse design
approach selectively focuses on areas of interest, strengthening the insights
derived from existing data and revealing new features that can drive catalyst
optimization. We employed IrPdPtRhRu HEAs as a case example to
demonstrate the framework’s capability. HEAs capture the multi-element
interactions, diverse local structures, and dynamic coordination environ-
ments commonly seen in real-world catalysts, making them an ideal system
for testing the framework’s generalizability and multi-scale structural
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characterization abilities. Notably, the PGH-VAEs are not limited to this
specific elemental combination. Leveraging the multi-scale insights of
GLYM topology and the flexibility of its multi-channel VAE, this frame-
work is highly adaptable, with broad potential for application across cata-
lytic systems.

ThePGHframeworkdemonstrates significant data and computational
efficiency advantages over traditional machine learning potentials (MLPs).
WhileMLP-basedapproaches often require training on thousands to tens of
thousands of DFT-relaxed configurations—as exemplified by recent work
on HEA catalysts using over 135,000 adsorption sites58—our method
achieves accurate structure-property characterization with only ~1000
descriptors and without iterative optimization steps. Notably, a compelling
vision for futuredevelopmentofPGH-VAEs involves integratingpretrained
MLPs that capture structure-energy relationships over a broader elemental
landscape. PretrainedMLPs, such as DPA-1 andDeePMD-kit, are typically
trained on millions of atomic configurations spanning dozens of elemental
species. Thesemodels offer broad coverage of atomic interactions, although
their predictive accuracy for specific systems often remains limited without
further fine-tuning. When extending the VAE framework to a broader
chemical space, it is essential to construct an additional representative and
chemically diverse training set, including new elements. To streamline this
process, pretrained MLPs can be leveraged to perform large-scale pre-
optimization of newly sampled structures. From these, structurally infor-
mative configurations can be selectively refined using high-accuracy DFT
calculations. This hybrid strategy not only preserves the precision of DFT
where it matters most but also substantially reduces the computational
burden associated with dataset generation, thereby enabling broader gen-
eralization of the model across chemical spaces without compromising
predictivefidelity. The feasibility of this approachhas beendemonstrated by
prior studies, where similar strategies have been applied to efficiently search
for low-energy adsorption configurations of adsorbates on diverse surface
types59. The most challenging aspect of this workflowmay lie in identifying

representative and meaningful structures from the pre-optimized config-
urations. Low-energy states, high-uncertainty points, and geometries that
are difficult to converge are potential candidates of interest; however, a
systematic and reliable selection strategy remains to be fully developed. Such
advancementwould enhance themodel’s design capabilities, paving theway
for the rational creation and evaluation of complex, multi-element catalytic
materials and ushering in a new paradigm in catalyst design.

Methods
Path complexes and their homology
PGH, an extension of GLMY homology theory, offers a method to quantify
the persistence of homology within path complexes across various
scales42–44.

GLMY homology is a generalized homology theory developed to
extend classical topological tools to settings where directionality and
asymmetry play essential roles. In classical homology theory, the funda-
mental building blocks of the studied space are simplices—vertices, edges,
triangles, and higher-dimensional analogs—assembled into simplicial
complexes, as shown in Fig. 5a. The goal is to analyze the connectivity and
higher-dimensional structures within such complexes, often built from
undirected graphs or point cloud data.

In contrast, as shown in Fig. 5b, GLMY homology is defined on path
complexes, where the basic units are directed paths rather than simplices.
This framework allows the encoding of directional relationships between
vertices, which are especially important in systems where vertex identity
matters, such as in crystals or molecules with heterogeneous atomic types.

As shown in Fig. 5c, d, while homology captures the topological fea-
tures of undirected structures, GLMY homology provides a richer repre-
sentation by accounting for ordered, vertex-sensitive connections. As a
result, it is particularly advantageous for studying crystalline andmolecular
systems,where the asymmetry anddirectional nature of local configurations
carry essential chemical or physical meaning. By preserving more

Fig. 5 | Building blocks and topological analysis of a cubic systemusing simplicial
and path complexes. a Basic building blocks of a simplicial complex. b Basic
building blocks of a path complex. c Graph representation of a cubic system with

distinct vertices. d Path complex representation of a cubic system with distinct
vertices. e Zero-, one-, and two-dimensional Betti numbers of the cubic system with
distinct vertices under different connection schemes.

https://doi.org/10.1038/s41524-025-01649-8 Article

npj Computational Materials |          (2025) 11:147 8

www.nature.com/npjcompumats


information about connectivity and composition, GLMYhomology offers a
more expressive and comprehensive topological descriptor in such contexts.

In algebraic topology, Betti numbers are a sequence of integers that
describe the number of independent k-dimensional holes in a topological
space. Specifically, the kth Betti number βk is the rank of the kth homology
group, which counts the number of k-dimensional cycles that are not
boundaries of (k+ 1)-dimensional objects. For example, β0 counts con-
nected components (0-dimensional holes), β1 counts independent loops or
cycles (1-dimensional holes), and β2 counts voids enclosed by surfaces
(2-dimensional holes). As shown in Fig. 5e, the Betti numbers in each
dimension of a cube vary with changes in connectivity, capturing the
topological features of the path complex.When there are two holes and two
disconnected components, β0 = 2 and β1 = 2. When a cavity forms, β1 = 2
and β2 = 1.

Let V be a nonzero finite set. For a given integer p ≥ 0, the elementary
p-path on V is a sequence i0i1i2 ⋯ ip of elements in V. Let ei0i1 i2���ip be the
generator corresponding to the elementary p-paths, then aK-linear space
can be generated by all the elementary p-path, which is denoted as
Λp =Λp(V). Specifically,wemake the convention thatΛ−1 = 0.An element ν
in Λp can be uniquely written as

ν ¼
X

i0 ;i1;i2 ;��� ;ip2V
ai0 i1i2 :::ip ei0i1 i2 :::ip ; ai0i1 i2 :::ip 2 K: ð2Þ

For any integer p ≥ 0, aK -linear map ∂p:Λp→Λp−1 is defined on the
generator ei0 i1i2���ip as

∂pei0i1 :::ip ¼
Xp

k¼0

ð�1Þkei0 :::îk :::ip ; p > 0; ð3Þ

and ∂0ei0 ¼ 0 for p ¼ 0; where îk indicates omission of the index ik, and
∂p∘∂p+ 1 = 0. Thus ∂ ¼ ð∂pÞp can be deduced as a boundary operator
on ðΛpÞp.

A path complex on V is a nonempty collection P of elementary paths
onV, and it satisfies that i0i1i2 � � � ip 2 P implies i1i2 � � � ip�1ip; i0i1i2 � � � ip�1 2 P.

A digraph G ¼ V ; Eð Þ consists of a set V of vertices and a subset E ⊂
{VG ×VG} of orderedpairs (v,w) of vertices called arrows.The arrow (v,w) is
denoted v→w. The collection {i0i1i2⋯ ip∣ik→ ik+1for all 0 ≤ k ≤ p−1,p ≥ 0}
of paths on G is a path complex, denoted by PðGÞ. The p-paths in P are
called allowed p-paths, and the K-linear space spanned by the allowed p-
paths is denoted as

Ap ¼ ApðPÞ ¼
X

i0 ;i1;:::;ip2V
ai0i1 :::ip ei0 i1;:::ip ji0i1:::ip 2 P; ai0;i1 ;:::ip 2 K

8
<

:

9
=

;:

ð4Þ

Here, as convention, let A�1 ¼ 0 be the null space. The space of
∂-invariant p-paths can be deduced by

Ω�1 ¼ 0; Ωp ¼ ΩpðPÞ ¼ fx 2 Apj∂x 2 Ap�1g; p≥ 0: ð5Þ

Then ∂pjΩp
: Ωp ! Ωp�1 satisfies∂pjΩp °∂pþ1jΩpþ1

¼ 0 and ðΩpÞp with
the boundary operator ∂j ¼ ð∂pjΩp

Þ
p
is a sub-chain complex of ðΛpðVÞÞp.

The GLMY homology of a path complex P is defined by

HpðP;KÞ :¼
ker∂pjΩp

im∂pþ1jΩpþ1

; p ≥ 0: ð6Þ

TheGLMYhomology of a digraphG is that of the path complexPðGÞ.
The pth Betti number of the digraph G is the rank of the homology
HpðG;KÞ ¼ HpðPðGÞ;KÞ, denoted as βp(G).

Let (S, ≤) be an order set and (S, ≤) can be regarded as a category with
elements in S as objects and all the binary orders as morphisms. A filtration
of path complexes means a covariant functorF : ðS; ≤ Þ ! Path from the
category (S,≤) to the categoryof path complexes. For eachelementa∈ S,F a
is a path complex. Let f a;b : F a ! F b be the morphism induced by a →
b,then fb,c∘fa,b = fa,c for a ≤ b ≤ c. The morphism fa,b induces a morphism of
GLMY homology

~f a;b : HpðF a;KÞ ! HpðF b;KÞ:

The pth (a, b)-persistent GLMY homology of F is defined by

Hab
p ðF ;KÞ ¼ imðHpðF a;KÞ ! HpðF b;KÞÞ; p≥ 0: ð7Þ

The (a, b)-persistent Betti number is defined as the rank of Hab
p ðF ;KÞ.

In practice, the path complex is usually defined on digraphs. Let
Digraph be the category of digraphs and digraph maps. A filtration of
digraphs is a covariant functor D : ðS; ≤ Þ ! Digraph from the category
(S,≤) to the categoryDigraph. Afiltrationof digraphs can induce afiltration
of path complexes, which results in the PGHof digraphs. Different filtration
can result in different persistence.

LetG = (V, E) be a digraph and V represents the set of data points in a
metric space (X, ∥ ⋅ ∥). Then, there is a weight function d : E ! R on the
edge set E deduced by

dðx1; x2Þ ¼ jjx1 � x2jj; ðx1; x2Þ 2 E � X ×X: ð8Þ

Here, this work specifies the metric space (X, ∥ ⋅ ∥) as the Euclidean
space with L2-norm. Then, let Et = {(x, y)∈ E∣d(x, y) ≤ t} and Gt ¼ ðV; EtÞ.
It can be deduced that G : ðR; ≤ Þ ! Digraph, t 7!Gt is a filtration of
digraphs, which leads to a persistent diagram DðGÞ of G.

Variational auto-encoders
In PGH-VAEs training, four key losses shape model performance. The
reconstruction losses for ligand and coordination features quantify how
accurately the decoder recreates these properties from the latent space,
ensuring the network captures essential structural information.Minimizing
these losses through encoder-decoder optimization improves feature
representation and generalization. The property prediction loss, reflecting
discrepancies between predicted and actual properties (adsorption ener-
gies), is reduced via supervised learning to enhance accuracy. KL divergence
ensures the latent space aligns with a smooth prior distribution, enabling
meaningful interpolation and sampling. Balancing the KL divergence term
weight maintains a trade-off between reconstruction fidelity and latent
space regularization.

In the sampling process, PGH-VAEs construct a low-dimensional
latent space, where each point represents an input data instance. The
coordinates of these points are derived from the downscaled ligand and
coordinationvariables, respectively.Within this latent space, our framework
identifies regions that may contain potential active sites by analyzing the
characteristics of the existing data points. A sample point is then selected
from these regions. The decoders reconstruct the ligand and coordination
variables into ligand and coordination feature vectors, respectively, gen-
erating potential active sites. These feature vectors are combined and input
into the property prediction branch to generate the predicted adsorption
energy. This process facilitates the design of active sites with optimal
adsorption capacity.

DFT calculation data
This work uses the same parameter setting and data as ref. 40. Spin-
polarized plane-wave DFT60 calculations were performed for HEAs struc-
ture optimization using VASP with projector augmented wavefunctions
and the PBE exchange functional. A kinetic energy cutoff of 500 eV and a
Fermi smearing width of 0.1 eV were used to ensure convergence. Van der
Waals interactions were tested on a subset of data using Grimme’s DFT-D3
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method, revealing a negligible effect. Supercells contained at least 64 atoms,
with a Monkhorst-Pack (2,2,1) k-point grid. Geometry optimizations were
terminated when atomic forces fell below 0.02 eV/Å.

Surfaces with various Miller indices were created using ASE and
PyMatGen, with lateral dimensions of at least 10Å to minimize periodic
image interactions. Lattice constants were averaged according to Vegard’s
law. Surfaces included at least four atomic layers, with the bottom two fixed
during relaxation, and a vacuumof 10Åwas added in the vertical direction.

The adsorption energy of *OH is calculated by comparing with
Pt(111), which is the most referenced material.

ΔEOH � ΔEOH;Ptð111Þ ¼ ðE�OH � E�Þ � ðE�OH;Ptð111Þ � E�;Ptð111ÞÞ: ð9Þ

where E*OH, E*, E*OH,Pt(111), E*,Pt(111) are the electronic energies of *OH-
adsorbed interface, clean interface, *OH-adsorbed interface of Pt(111), and
clean interface of Pt(111), respectively.

The activity calculation of PtPdRu
For a type of catalytic active site, where the proportion of Pt is rPt, the
proportion of Pd is rPd, and the proportion ofRu is rRu, with a total ofN such
catalytic active sites, the activity j can be determined using the following
expression based on the format of the Arrhenius equation37,61:

j ¼ 1
N

XN

i¼1

ðrPt × rPd × rRuÞe�
jΔEi

OH
�ΔEtarget j
Tkb : ð10Þ

Here, ΔEi
OH represents the modeled adsorption energy for the ith

active site. Etarget is the optimal *OH adsorption energy according to the
Sabatier principle, which is 0.1 eV higher than that in Pt (111)37,53. Based on
this setting, the activity of Pt-Pd-Ir-Ru-Rh (111) is assigned a j value of
7.0 × 10−9, and the activity of Pt-Pd-Ir-Ru-Rh (211) is assigned a j value of
3.3 × 10−4. kb is Boltzmann’s constant, and T is the absolute temperature.
Here, we assume that T = 300 K.

Data availability
The data is available from https://zenodo.org/records/15266141.

Code availability
Code is available from https://github.com/PKUsam2023/PGH-VAEs.
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